"The modular LEGO blocks are interesting in that we could create a prefabricated toolbox for microfluidic devices," Valentin said. "You keep a variety of preset parts with different microfluidic architectures on hand, and then you just grab the ones you need to make your custom microfluidic circuit. Then you heal them together and it's ready to go."

And storing the blocks for long periods before use doesn't appear to be a problem, the researchers say.

"Some of the samples we tested for this study were three or four months old," said Eric DuBois, a Brown undergraduate and co-author on the paper. "So we think these could remain usable for an extended period."

The researchers say they'll continue to work with the material, potentially tweaking the properties of the polymers to get even more durability and functionality.

Other authors on the paper were Catherine Machnicki, Dhananjay Bhaskar and Francis Cui. The work was supported by the U.S. Department of Education through a GAANN Training Grant in the Applications and Implications of Nanotechnology (P200A150037), and Brown University through a Karen T. Romer Undergraduate Research and Teaching Award (UTRA).

- Kevin Stacey